If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-146=0
a = 1; b = 1; c = -146;
Δ = b2-4ac
Δ = 12-4·1·(-146)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{65}}{2*1}=\frac{-1-3\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{65}}{2*1}=\frac{-1+3\sqrt{65}}{2} $
| b+(3)=-9 | | 3^x^2=7^6x | | 5(m–1)=-2+9m+5 | | 5=v+8/4 | | ½x+8=10 | | -1/3(9x+42)5x=70 | | 21=7(k+58) | | -54=u/4 | | 8.51.2=t6.5. | | 25-x/150=-35 | | 81=3(j+9) | | 4w+1=-19 | | 9=m/8 | | 136=5x+6 | | 25-3v=13 | | 3s−1=5 | | x=13/3=6 | | 122=5x+6 | | -1=j/3-4 | | 1+a=16 | | 1y+8=3y | | 61=9x-11 | | x+14=130 | | 11x=643 | | s-58/4=7 | | v−10=23 | | 8x=364 | | -2=-x+ | | 2+-k=8 | | 5-5(4c-7)=50 | | 5-5(4c-7=50 | | 2=3c−1 |